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concepts and relationships in the theory of conditioning in point
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THE THEORY OF CONDITIONING IN POINT PROCESSFES

by Olav Kallenberg, GOteborg, Chapel Hill, Auburn

1. Introduction

. By a point process we mean a random configuration of isolated points

in some topological space. Point processes arise naturally in a

great variety of contexts, both theoretical and applied.

In a physical or biological application, the 'points' may

e.g. be the positions of particles or organisms, whereas in gueueinc

theory they may be the arrival times of customers. However, the scope

of applications is not restricted to situations describable in terms

of discrete points, since other types of geometrical objects, such

as planes or circles, may be identified with points in suitable

parameter spaces. In theoretical applications, the 'points' may be

the level crossings of a random process, or the times and sizes

S
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of its jumps. Following ItS, we may further consider the point
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'’ process of excursions from a fixed state of a Markov process, 7.
X
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marked in a diagram versus local time at that state. In general, it
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h

Mathematically, point processes may be described as locally

seems that a point process description may be fruitful whenever _%17
SOSA,
S Y
. . IS
there are random objects which may be counted. NN
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finite random sets. Since the counting properties are fundamental,

it is often convenient to identify the collection of points with

the associated counting random measure. Conversely, every integer

valued random measure on a sufficiently nice space is the counting
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measure of some locally finite random set, provided the 'points'
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are allowed tc have multiplicities.
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In the sequel, we shall only consider simple point processes E,
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where no multiplicities occur. For convenience, the topological ;‘F:~
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second countable Hausdorff space. The number of points €BR in a
bounded Borel set BcS will be assumad to be finite and measurable,
hence a random variable.

Given a point process &, it is natural to look at the conditional
distribution of & (or of some other random object defined on the
same probability space), given some partial information about %,
such as the configuration in some subset. In statistical mechanics,
for instance, one is interested in descriptions in terms of the
interaction potential between the particles of the conditional
distribution in a bounded set B, given the configuration outside.

Another type of conditioning is to specify a number of points
of §, and to ask for the distributional properties of the remainder
of the point process. This kind of conditioning arises naturally
in the context of queueing systems, when one wants to describe
what happens to a 'typical' customer.

A third type of conditioning arises if one wants to describe
a point process of events on the time axis in a dynamical way,
and look at the conditional probability of having an event in a
small time interval dt, when the history up to time t is known.
This leads to the familiar and powerful martingale approach to
point processes. If the time axis is replaced by some more general
space, the possibility of a dynamical description is lost, but it
still makes sense to consider the conditional contribution to a
space element dt, given the configuration outside t. Such ideas
have turned out to be useful in stochastic geometry.

Historically, theories of conditioning have been developed
independently in the different situations described above. It was

only recently that the various aspects of conditioning could be

merged into an allembracing and systematic theory of conditioning
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in point processes. Here we shall briefly outline the contours of AN
this theory. For further information, as well as for historical
remarks and complete bibliography, the reader is referred to

:
Kallenberg (1983/86) and Kallenberg (1984). :J

Palm measures

Univariate Palm probabilities were introduced in 1943 by the Swedish

mathematician anéd engineer C. Palm in an extensive but non-rigorous
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study of telephone congestion. Hinchin later adopted some of Palm's

[

o ideas for his 1955 monograph on gqueuing theory, hence the name -

&
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Palm-Einchin theory for the early developments in this area.
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However, the modern theory of Palm distributicns and Palm measures 3k
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originated with Ryll-Nardzewski's approach of 1961.
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Here the reduced Palm distribution Qg of a point process g at
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the point s<S is defined a.e. as the Radon-Nikodym derivative

LN
R

E{§(ds); €-5.¢A]

Q () = - . ses. (1) R

EE(ds) AR

Note that this approach requires the intensity measure Ef to be DN
\"’.‘-':

o-finite. Similarly, the multivariate (reduced) Palm distributions E o
Ot

are given by ;}ﬁ:
r (n) . 8 - -9 :.' t‘.

0 (n) o DLE T (@sy.--dsp)i €-8ey-e..dspen) S

r .'..v

SyreceeSy 2™ (ds,...as)) SR

(n)

|' ¢
o

where g denotes the restriction of the product measure En=Ex_..xE

-
v ‘.
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to the set where all coordinates are distinct. It is understood

PO I ot

that regular (i.e. measure valued) versions should be chosen in

"

o o
.
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- (1) and (2). Thus these formulas define disintegrations of the so
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callec Campbell measures ¢, and C_ on the right. When Ef and EE( ) IR
i rree
- < i 3 . . » 3 3 . - - ~' \"
are 1nrinite, it 1s still possible to obtain disintegrations ﬁ;:“
'.t ~ - L) L)
C_(BAA) = A ds,...ds 3
N n ( ) J 95 ...s (A) Vh( 1 n) ! (3) vt
k'.. B 1 n ::\‘:\';
. ' ' PN
E_ for some suitable supporting measures V_ and Palm measures g , i
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. where the latter may now be unbounded and are unique OnLly up to an NG
» l. -n.".'
! A
’ arbitrary normalization. The final step is to put Q =Qg s ©OF RV
y B 1°" "% n ' \:
g..=a for a finite counting measure j with atoms at s.,....s_. . :
*L °S,...S i 1 n PR AR
v 1 n rot ol
ﬁ The conditioning interpretation of the kernels Q and ¢ may be iﬂ?;
: X
, justified in various ways. One is to show that O _can be approximated Lty
3 u E N
i by the conditional distribution of £ outside the support of P given i
g LN

e
IR

e

N

that ¢ has 'points' within small neighbourhoods of Syrve-rS_ - Thus

-

=, may indeed be thought of as the conditional distribution of &-u, ERRI

given that £€>u. The interpretation of a, 1s similar.

Another relation to ordinary conditioning which justifies the

-
»
.
.
.
n
.
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A
a3
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N
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above definitions is the fact that, for bounded Borel sets BZS,

F T
P

- e _ dp.-u: BSucA, uB=0-
P BCren BEl = i R (4)

qBElp: PB=Of
C

Here Bf and B¢ denote the restrictions of £ to B and its complement

B¢, Implicit in (4) is the fact that the denominator on the right

is a.s. finite and positive. When the Palm distributions Qu exist,

(4) expresses the intuitively obvious fact that conditioning on

fBg=p} is equivalent to conditioning first on igzy}, and then, in

r. SRNG5S B VS S Y SRR

the resulting conditional distribution, on the event 1(5-p)8=0}. ix?._
.-:'_.'__.’
N
=.-Gibbs_and_Papangelou_kernels )
——————————————————————————————— -’:A',-J-
'\'_-:‘.n
The so called first order Papangelou kernel>j=nl of a point process ' g
I' ! ' :.“\...:-.
" “ . , RO
" = was 1ntroduced by the present author in 1978 through the formula RSN,
' L ..C _.\__.:\.:
) pleB=1{B%] | ‘ Y
% B = ' a.s. . EB=0*} 5 tOTALN,
. n — 3 §. on g O' ’ (5) Rt
P tB=0 B =z o
3 - - 4 L
- olus the requirement that w(supp £)=0. It may be shown that this BENGAE
- 1 e
< . R . .. SRR
- a.5. uniquely defines a locally firnite random measare =~ on S. ALY
: 1 . : | , RS
Y Tlri.arily, the n-th orcder Papangelou kernel 1s a random measure on RIUCALN
ISt S
. . 4
s S" civen by - i ) A N
" P ;Bl=...=;Bn=l, TB=n BTy, _ RN
» (Bov.. .~ = = - .s. (ER=0}
" n 1 Bn) Te i 5C1 a.s. onysB=0}, RN,
v P:¢B=0'B 4 e
v . - ARSI
- for disjoint subsets Bl""'Bn of B, plus the requirements that the =g
n: -\'_.‘-:.
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one-dimensional projections of " shoulé not charge supp £, and

_ . . .. . , n .
Zurther that all diagonai planes in £ should have measure zero.

The final step is to define the Gibbs kernel [ as the random

measure on the space of finite counting measures on S, given by
e PT¢BeA|BY] )
AN 1B =0) = — — a.s. on -£8=0, (7)
‘ P £B=0.B7§] '

again with an extra reguirement that ' should a.s. be restricted

o measures u with u(supp £)=0. It is easy to check that 7' and the

zre relatecd through the formula

-

(h) = = O +*...+90_ €A a.s. (38)
— n. 1% ’
crovided we put r0=2%. Jther interestinc facts are the super-
multiplicativity
- ds,...ds_dt,...dt " n'(dt,...d 9
:m+n( 51 m 1 n) 2 |m(dsl ’dsm)nn( 1 tn)’ (9)

where xé denotes the Papangelou kernel of the point process

., +...+f; , and further the ineguality
1 m

Ef(g) > E] [£(g+n) 1 uB =0l TUap) ; £B=0]. - (10)
It may be shown that equality holds in (9) and (10} whenever

(3): P{€B=0 B°¢]>0 a.s. for bounded BcS. (11)
In that case, the random measures N may be obtained from the
corresponding Campbell measures Cn by disintegration in the second
variable:

C,(BxA) = Eln B: gea). (12)
In this sense, the Papangelou kernels may be regarded as 'duals'
to the reduced Palm measures. Under (z), even the Gibbs kernel

may be cbtained throuch disintegration of a suitable measure, namely

the sc calied compounc Campbell measure C, civen by

o
l .
CMYA) = T = C (R3S +...+3_ eMixa), (13)
n=0 n! n Sl Sn J

where M 1s a set of finite counting measures. Here the term with
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index 0 should be interpreted as l{OeMFPiEeA}, and the disintegration

of C is given by
C(MxAa) = E[T(M); cen]. (14)
The measure C may also be defined directly throuch the formula

CMxa) = E 2 1{ueM, €-uenl, (15)
ugg ’
where the summation extends over all finite counting measures u<g.

This shows in particular that C is symmetric whenever £ is a.s.
finite. Since *the Palm measures and the Gibbs kernel were both
obtained by disintecration of C, but in different directions, the

two kKernels must be essentially egual, apart from a normalization.

In fact, it may be shown that, for finite %,

qg (M)
—) = %

. ;;{T}

In this sense, the sets of Palm measures and Papangelou kernels

a.s. (16)

may thus be considered as 'self-dual'. It is interesting to compare
the above fact with formula (4).

We conclude this section by indicating the role of the Gibbs
and Papangelou kernels in statistical mechanics. Here it is assumed
that each M is absolutely continuous with respect to Lebesgue
measure, and admits a strictly positive density Yn. The process

- log Yn(sl,...,sn) is then interpreted as the local energy recuired

to add new particles at Syse--s8 . Under the physically reasonable
assumption () in (11), formula (9) turns into an equality,

expressing simply the conservation law for energy. Needless to say,

the Cibbs kernel is named after J.W. Gibbs, the founder of statistical

mechanics, in whose writincs it occurs implicitly.
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A point process § on R+ mayv be regarded as a(locaD submartingale

with respect to its natural filtration (;é), and therefore has a

Docb-Meyer decomposition into a predictable and non-decreasing

A -~
component £, and a local martingale £€-€. It is natural to identify

" % % e 2
R
A

A

N
T ané its compensator ¥ with the associated random measures, and

A
-¢ characterize & through the equation

Cu e

j-
~1)

~ A ,
fvag = njvag, ‘.

valié for arbitrary precdictable and non-negative trocesses V. It

A
is well-known that § can also be constructed explicitly through discrex.

approximations of the type

n

N
gt = lim -Z P[gt.> St \ft. ], (18)
n—rec 3=1 3 j-1' 73-1
where O=t0<tl<...<tn=t, and it is assuma2d that the mesh size of the

n-th partition tends to zero.

]
In general spaces, it 1s natural to imitate the above procedure RSN
AR
N
by forming the sums ﬁ}ik'
SN
-1]1€ oz c £ Ter . 11%.¢
Zj p[sxnj 1[Injg] <_Zj P[gT,4>0]1 58] < ?ELfInlenjv;J, (19) o~

where the Inj for fixed n form a partition of S, and where the
summation extends over all Inj in a fixed set B. Assuming that e

( ) is a refinement of (I_.), that the diameters of I, tend

In+l,j nj 3 |

uniformly to zero, and that B is a finite union of sets Inj' it

may be shown that the first two sums in (19) {and even the third
when E§E< ) converge a.s. to some random variable §{E, where & is
a locally finite random measure on S, which is independent of (Inj) R

ancé related -

O

the Papangelou kernel mn via the formulas
1

rids) Zids)
§(ds) = ———,  n(ds) = ———,  s¢supp §. (20)
1+74s: 1-¢{s}

The random measure 5 is known as the conditional intensity of §.

The name Papangelou kernel for q derives from the fact that
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F. Papangelou was the first, in 1974, to prove convergence of one

« .

of the sums in (19), in a special case when §=q. He also established

the important fact that, for S of the form Rxg', g is a mixture

of stationary Poisson processes iff { is a.s. shift invariant. This -

fact has some rather remarkable consequences in stochastic geometry. -

Sy v e
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By the similarity of (18) and (19), one may expect that even

-
the conditional intensity { may be characterized, like § in (17),

as a dual projection with respect to some suitable o-field Z in

the product gpace Sx{lL, where{k denotes the underlying probability

1 BRI

! space. In fact, van der Hooven showed in 1982 that z:can be chosen
: as the exvisible o-field generated by all sets of the form BXF,
where B is a bounded Borel set in S, while F lies in the comgpletion
of d(BcE). Thus, in analogy with (17), § can be characterized as
the a.s. unicue 'exvisible' random measure such that

Efza€ = Efzdg (21)

holds for all 'exvisible' and non-negative processes Z on S.

W W W XY TR Y-T .7 . s s

References

Kallenberg, 0. (1983/86). Random Measures, 3rd and 4th editions.

Akademie-Verlag & Academic Press, Berlin & London.
Kallenberg, O. (1984). An informal guide to the theory of conditioning

in point processes. Internat. Statist. Review 32, 151-164.

FETW F VM EEY &V F OV SMEaaseAry sy s e

L

/
Sp
¢

TR
oy \.'_\“
ENEAGAS,
N RN
ENSAG,
PN
RN
AR
:\"\‘ 0%




XA

A& S N

Oy
)

V=" TR W AT ]

i e n

IR o g




